44 research outputs found

    Bigram - PGK: phosphoglycerylation prediction using the technique of bigram probabilities of position specific scoring matrix

    Get PDF
    Background: The biological process known as post-translational modification (PTM) is a condition whereby proteomes are modified that affects normal cell biology, and hence the pathogenesis. A number of PTMs have been discovered in the recent years and lysine phosphoglycerylation is one of the fairly recent developments. Even with a large number of proteins being sequenced in the post-genomic era, the identification of phosphoglycerylation remains a big challenge due to factors such as cost, time consumption and inefficiency involved in the experimental efforts. To overcome this issue, computational techniques have emerged to accurately identify phosphoglycerylated lysine residues. However, the computational techniques proposed so far hold limitations to correctly predict this covalent modification. Results: We propose a new predictor in this paper called Bigram-PGK which uses evolutionary information of amino acids to try and predict phosphoglycerylated sites. The benchmark dataset which contains experimentally labelled sites is employed for this purpose and profile bigram occurrences is calculated from position specific scoring matrices of amino acids in the protein sequences. The statistical measures of this work, such as sensitivity, specificity, precision, accuracy, Mathews correlation coefficient and area under ROC curve have been reported to be 0.9642, 0.8973, 0.8253, 0.9193, 0.8330, 0.9306, respectively. Conclusions: The proposed predictor, based on the feature of evolutionary information and support vector machine classifier, has shown great potential to effectively predict phosphoglycerylated and non-phosphoglycerylated lysine residues when compared against the existing predictors. The data and software of this work can be acquired from https://github.com/abelavit/Bigram-PGK

    Hierarchical maximum likelihood clustering approach

    Get PDF
    Objective: In this work, we focused on developing a clustering approach for biological data. In many biological analyses, such as multi-omics data analysis and genome-wide association studies (GWAS) analysis, it is crucial to find groups of data belonging to subtypes of diseases or tumors. Methods: Conventionally, the k-means clustering algorithm is overwhelmingly applied in many areas including biological sciences. There are, however, several alternative clustering algorithms that can be applied, including support vector clustering. In this paper, taking into consideration the nature of biological data, we propose a maximum likelihood clustering scheme based on a hierarchical framework. Results: This method can perform clustering even when the data belonging to different groups overlap. It can also perform clustering when the number of samples is lower than the data dimensionality. Conclusion: The proposed scheme is free from selecting initial settings to begin the search process. In addition, it does not require the computation of the first and second derivative of likelihood functions, as is required by many other maximum likelihood based methods. Significance: This algorithm uses distribution and centroid information to cluster a sample and was applied to biological data. A Matlab implementation of this method can be downloaded from the web-link http://www.riken.jp/en/research/labs/ims/med_sci_math/

    DeepInsight: a methodology to transform a non - image data to an image for convolution neural network architecture

    Get PDF
    It is critical, but difficult, to catch the small variation in genomic or other kinds of data that differentiates phenotypes or categories. A plethora of data is available, but the information from its genes or elements is spread over arbitrarily, making it challenging to extract relevant details for identification. However, an arrangement of similar genes into clusters makes these differences more accessible and allows for robust identification of hidden mechanisms (e.g. pathways) than dealing with elements individually. Here we propose, DeepInsight, which converts non-image samples into a well-organized image-form. Thereby, the power of convolution neural network (CNN), including GPU utilization, can be realized for non-image samples. Furthermore, DeepInsight enables feature extraction through the application of CNN for non-image samples to seize imperative information and shown promising results. To our knowledge, this is the first work to apply CNN simultaneously on different kinds of non-image datasets: RNA-seq, vowels, text, and artificial

    Prediction Models of Breast Cancer Outcome

    Get PDF
    The goal of this study is to establish a method for predicting overall survival (OS ) and disease‐free survival (DFS ) in breast cancer patients after surgical operation. The gene expression profiles of cancer tissues from the patients, who underwent complete surgical resection of breast cancer and were subsequently monitored for postoperative survival, were analyzed using cDNA microarrays. We detected seven and three probes/genes associated with the postoperative OS and DFS , respectively, from our discovery cohort data. By incorporating these genes associated with the postoperative survival into MammaPrint genes, often used to predict prognosis of patients with early‐stage breast cancer, we constructed postoperative OS and DFS prediction models from the discovery cohort data using a Cox proportional hazard model. The predictive ability of the models was evaluated in another independent cohort using Kaplan–Meier (KM ) curves and the area under the receiver operating characteristic curve (AUC ). The KM curves showed a statistically significant difference between the predicted high‐ and low‐risk groups in both OS (log‐rank trend test P = 0.0033) and DFS (log‐rank trend test P = 0.00030). The models also achieved high AUC scores of 0.71 in OS and of 0.60 in DFS . Furthermore, our models had improved KM curves when compared to the models using MammaPrint genes (OS : P = 0.0058, DFS : P = 0.00054). Similar results were observed when our model was tested in publicly available datasets. These observations indicate that there is still room for improvement in the current methods of predicting postoperative OS and DFS in breast cancer

    Risk prediction models for dementia constructed by supervised principal component analysis using miRNA expression data

    Get PDF
    Alzheimer’s disease (AD) is the most common subtype of dementia, followed by Vascular Dementia (VaD), and Dementia with Lewy Bodies (DLB). Recently, microRNAs (miRNAs) have received a lot of attention as the novel biomarkers for dementia. Here, using serum miRNA expression of 1,601 Japanese individuals, we investigated potential miRNA biomarkers and constructed risk prediction models, based on a supervised principal component analysis (PCA) logistic regression method, according to the subtype of dementia. The final risk prediction model achieved a high accuracy of 0.873 on a validation cohort in AD, when using 78 miRNAs: Accuracy = 0.836 with 86 miRNAs in VaD; Accuracy = 0.825 with 110 miRNAs in DLB. To our knowledge, this is the first report applying miRNA-based risk prediction models to a dementia prospective cohort. Our study demonstrates our models to be effective in prospective disease risk prediction, and with further improvement may contribute to practical clinical use in dementia

    Using Functional Signatures to Identify Repositioned Drugs for Breast, Myelogenous Leukemia and Prostate Cancer

    Get PDF
    The cost and time to develop a drug continues to be a major barrier to widespread distribution of medication. Although the genomic revolution appears to have had little impact on this problem, and might even have exacerbated it because of the flood of additional and usually ineffective leads, the emergence of high throughput resources promises the possibility of rapid, reliable and systematic identification of approved drugs for originally unintended uses. In this paper we develop and apply a method for identifying such repositioned drug candidates against breast cancer, myelogenous leukemia and prostate cancer by looking for inverse correlations between the most perturbed gene expression levels in human cancer tissue and the most perturbed expression levels induced by bioactive compounds. The method uses variable gene signatures to identify bioactive compounds that modulate a given disease. This is in contrast to previous methods that use small and fixed signatures. This strategy is based on the observation that diseases stem from failed/modified cellular functions, irrespective of the particular genes that contribute to the function, i.e., this strategy targets the functional signatures for a given cancer. This function-based strategy broadens the search space for the effective drugs with an impressive hit rate. Among the 79, 94 and 88 candidate drugs for breast cancer, myelogenous leukemia and prostate cancer, 32%, 13% and 17% respectively are either FDA-approved/in-clinical-trial drugs, or drugs with suggestive literature evidences, with an FDR of 0.01. These findings indicate that the method presented here could lead to a substantial increase in efficiency in drug discovery and development, and has potential application for the personalized medicine

    Stepwise iterative maximum likelihood clustering approach

    Get PDF
    Background Biological/genetic data is a complex mix of various forms or topologies which makes it quite difficult to analyze. An abundance of such data in this modern era requires the development of sophisticated statistical methods to analyze it in a reasonable amount of time. In many biological/genetic analyses, such as genome-wide association study (GWAS) analysis or multi-omics data analysis, it is required to cluster the plethora of data into sub-categories to understand the subtypes of populations, cancers or any other diseases. Traditionally, the k-means clustering algorithm is a dominant clustering method. This is due to its simplicity and reasonable level of accuracy. Many other clustering methods, including support vector clustering, have been developed in the past, but do not perform well with the biological data, either due to computational reasons or failure to identify clusters. Results The proposed SIML clustering algorithm has been tested on microarray datasets and SNP datasets. It has been compared with a number of clustering algorithms. On MLL datasets, SIML achieved highest clustering accuracy and rand score on 4/9 cases; similarly on SRBCT dataset, it got for 3/5 cases; on ALL subtype it got highest clustering accuracy for 5/7 cases and highest rand score for 4/7 cases. In addition, SIML overall clustering accuracy on a 3 cluster problem using SNP data were 97.3, 94.7 and 100 %, respectively, for each of the clusters. Conclusions In this paper, considering the nature of biological data, we proposed a maximum likelihood clustering approach using a stepwise iterative procedure. The advantage of this proposed method is that it not only uses the distance information, but also incorporate variance information for clustering. This method is able to cluster when data appeared in overlapping and complex forms. The experimental results illustrate its performance and usefulness over other clustering methods. A Matlab package of this method (SIML) is provided at the web-link http://www.riken.jp/en/research/labs/ims/med_sci_math/

    Empirical Bayes Estimation of Semi-parametric Hierarchical Mixture Models for Unbiased Characterization of Polygenic Disease Architectures

    No full text
    Genome-wide association studies (GWAS) suggest that the genetic architecture of complex diseases consists of unexpectedly numerous variants with small effect sizes. However, the polygenic architectures of many diseases have not been well characterized due to lack of simple and fast methods for unbiased estimation of the underlying proportion of disease-associated variants and their effect-size distribution. Applying empirical Bayes estimation of semi-parametric hierarchical mixture models to GWAS summary statistics, we confirmed that schizophrenia was extremely polygenic [~40% of independent genome-wide SNPs are risk variants, most within odds ratio (OR = 1.03)], whereas rheumatoid arthritis was less polygenic (~4 to 8% risk variants, significant portion reaching OR = 1.05 to 1.1). For rheumatoid arthritis, stratified estimations revealed that expression quantitative loci in blood explained large genetic variance, and low- and high-frequency derived alleles were prone to be risk and protective, respectively, suggesting a predominance of deleterious-risk and advantageous-protective mutations. Despite genetic correlation, effect-size distributions for schizophrenia and bipolar disorder differed across allele frequency. These analyses distinguished disease polygenic architectures and provided clues for etiological differences in complex diseases
    corecore